The figure illustrates full-duplex and half-duplex communication.
Full-duplex communication improves the performance of a switched LAN. Full-duplex communication increases effective bandwidth by allowing both ends of a connection to transmit and receive data simultaneously. This is also known as bidirectional. This method of optimizing network performance requires micro-segmentation. A micro-segmented LAN is created when a switch port has only one device connected and is operating at full-duplex. This results in a micro size collision domain of a single device. Because there is only one device connected, a micro-segmented LAN is collision free.
Unlike full-duplex communication, half-duplex communication is unidirectional. Sending and receiving data does not occur at the same time. Half-duplex communication creates performance issues because data can flow in only one direction at a time, often resulting in collisions. Half-duplex connections are typically seen in older hardware, such as hubs. Full-duplex communication has replaced half-duplex in most hardware.
Most Ethernet and Fast Ethernet NICs sold today offer full-duplex capability. Gigabit Ethernet and 10Gb NICs require full-duplex connections to operate. In full-duplex mode, the collision detection circuit on the NIC is disabled. Frames that are sent by the two connected devices cannot collide because the devices use two separate circuits in the network cable. Full-duplex connections require a switch that supports full-duplex configuration, or a direct connection using an Ethernet cable between two devices.
Standard, shared hub-based Ethernet configuration efficiency is typically rated at 50 to 60 percent of the stated bandwidth. Full-duplex offers 100 percent efficiency in both directions (transmitting and receiving). This results in a 200 percent potential use of the stated bandwidth.